

Extended Drought Analysis

John Boyer

Agenda Item 4a

<u>Methods</u>

- Supply-side investigation to quantify sensitivities to hydrologic non-stationarity (aka "the past may not be a good predictor of the future")
- Each scenario constructed with repeating sequences of monthly flows and reservoir evaporation rates extracted from historical hydrology
- Used 2070 High Demand Scenario projections
- Used current reservoir operation rules

<u>Methods</u>

Three (3) constructed scenarios:

- 1. Repeating 5-year drought constructed by splicing together the **five driest** water years in the hydrologic period of record with respect to mainstem total annual flow. These were **2001**, **2008**, **1981**, **1988**, and **2017**.
- 2. Repeating single year drought corresponding to the second driest water year (2008) and identified as the critical single year drought with respect to Lake Thurmond water supply availability
- **3. Repeating synthetic drought year** constructed by splicing together the **twelve driest calendar month flows** in the hydrologic period of record.

<u>Methods</u>

<u>Methods</u>

Scenario 3: 12 driest calendar months (Mainstem headwater flow)

Mean annual flow = 22.5 CFS

Jan 1956 Feb 2017 Mar 2017 Apr 1986 May 2001 Jun 2008 Jul 2008 Aug 2007 Sep 1954 Oct 1954 Nov 2016 Dec 1955

Scenario 1 Shortages

Scenario 2 Shortages

Scenario 3 Shortages

Results

Upper Savannah Basin	Scen 0	Scen 1	Scen 2	Scen 3
total basin annual mean shortage (MGD)	0.12	1.2	4.1	8.5
total basin annual mean shortage (%) ¹	0.05%	0.5%	1.8%	3.7%
percentage of water users experiencing shortage	7.5%	15.0%	15.0%	15.0%
average frequency of shortage (%) ²	0.4%	2.0%	5.5%	10.5%

 1 = as a percentage of total water demand; 2 = for those experiencing shortages

Scenario 0, Baseline Hydrology Scenario 1, 5-Year Repeating Sequence Scenario 2, Single Year (2008) Repeating Sequence Scenario 3, 12 Driest Calendar Months Repeating Sequence Water Users with Shortages:

GA-side Lake Thurmond users McCormick Savannah Lakes Golf Club Hickory Knob Golf Club Vulcan Hanson Aggregates

Results

Lower Savannah Basin	Scen 0	Scen 1	Scen 2	Scen 3
total basin annual mean shortage (MGD)	0.01	0.01	0.2	22.2
total basin annual mean shortage (%) ¹	0.0%	0.0%	0.03%	4.4%
percentage of water users experiencing shortage	5.6%	5.6%	5.6%	5.6%
average frequency of shortage (%) ²	0.03%	0.09%	0.07%	1.2%

 1 = as a percentage of total water demand; 2 = for those experiencing shortages

Scenario 0, Baseline Hydrology

- Scenario 1, 5-Year Repeating Sequence
- Scenario 2, Single Year (2008) Repeating Sequence

Scenario 3, 12 Driest Calendar Months Repeating Sequence

Water Users with Shortages: Graniteville Dominion Urquhart Station

Discussion & Limitations

- Reservoir operations play a role, primarily with respect to the *location* of shortages
 - Altered operational rules could, at least partially, mitigate shortages
- No attempts have been made to directly incorporate future hydrologic or climate projections (e.g. increased evap)
- Neglects changes in groundwater-surface water interactions (e.g. reduced baseflow due to aquifer depletions)